
PHYSICAL REVIEW E JANUARY 2000VOLUME 61, NUMBER 1
Molecular simulation and theory of a liquid crystalline disclination core

Denis Andrienko and Michael P. Allen
H. H. Wills Physics Laboratory, University of Bristol, Royal Fort, Tyndall Avenue, Bristol BS8 1TL, United Kingdom

~Received 9 July 1999; revised manuscript received 7 September 1999!

Molecular simulations of a nematic liquid crystal confined in cylinder geometry with homeotropic anchoring
have been carried out. The core structure of a disclination line defect of strength11 has been examined, and
comparison made with various theoretical treatments, which are presented in a unified way. It is found that
excellent fits to the cylindrically symmetrized order tensor profiles may be obtained with appropriate parameter
choices; notwithstanding this, on the time scales of the simulation, the cylindrical symmetry of the core is
broken and two defects of strength1

1
2 may be resolved.

PACS number~s!: 61.30.Cz, 61.30.Jf, 61.20.Ja, 07.05.Tp
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I. INTRODUCTION

Liquid crystals are at the heart of a range of technolog
devices that rely on the ability to manipulate the direction
preferred molecular alignment, thedirector n, with electric
and magnetic fields, and through coupling to surfaces.
practical performance of such devices and the theoretica
scription of director distortions both rely on smooth variati
of the director with position in space; this is well account
for by the Frank free energy@1,2#, which is an expansion in
squared gradients of the director fieldn(r ), parametrized by
the splay (K11), twist (K22), and bend (K33) elastic con-
stants. The directorn is the principal axis of the loca
second-rank ordering tensorQ, which characterizes the nem
atic state; such a description is intrinsically uniaxial and
glects variation of thedegreeof ordering with position, of
the kind that occurs near bounding surfaces and around
pological defects. Such defects are treated as singularitie
the director field; for a better description, it is necessary
replace the director field with one that allows some variat
of the relevant order tensor components over relatively s
length scales. The relevant region near the defect is ca
the core.

The most common type of defect in the nematic phas
the disclination line defect, characterized by an integer
half-integer index defined by the number of turns of the
rector field associated with taking a circuit about the lin
The phenomenological approach to the investigation of
defects was described by Schopohl and Sluckin@3,4#. They
worked with the full order-parameter tensorQab in the
framework of Landau–de Gennes theory, and applied thi
the structure of the61

2 disclination core. Thefull order pa-
rameterQab was used~a! to avoid divergent terms in the
elastic energy and~b! to take into account possiblebiaxiality
of the defect core. Then the general idea was implemen
for the particular problem of the core structure of the61
strength defect: Biscari and Virga@5# and Mottram and
Hogan@6# solved the equations for the order tensor and
tained order parameter and biaxiality profiles. They us
truncated expansions of the free-energy density, wh
helped them to obtain analytical solutions to the proble
Finally, Sigillo et al. @7# considered the11 disclination
problem in the spirit of Maier-Saupe mean-field theory.

In this paper we use the approach proposed by Scho
PRE 611063-651X/2000/61~1!/504~7!/$15.00
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and Sluckin to obtain the order parameter profiles near
disclination line. We also recapitulate the results of the ot
theories in order to discuss the advantages and disadvan
of the proposed models. We compare these predictions
the results of computer simulation using a simple molecu
model. Computer simulation is a well established method
relating bulk elastic coefficients@8–14#, and more recently
surface anchoring strengths@15,16#, to molecular structure
and interaction parameters. An early study of disclinat
line defects@17# involved Monte Carlo simulations of rod
like molecules~hard spherocylinders! confined in cylindrical
geometry with boundary conditions chosen to stabilize
chosen director field far from the defect. This work conce
trated on the disclination line defect of strength21

2, in cyl-
inders of radius 2–3 times the molecular length. For sh
rods, smooth variation of the order parameters with posit
was observed, and the defect core retained axial symm
For longer rods, having much larger bend elastic consta
this symmetry was broken, and various microscopically ‘‘e
caped’’ structures were seen. There was also evidenc
metastability, and nonconvergence of structures from diff
ent starting configurations, which the authors attempted
resolve using free-energy calculations. More recently
study of two-dimensional models has been carried out@18#.
These studies support the view that the disclination cor
one or two molecular lengths across.

The purpose of this paper is to present simulation res
for a model of hard particles in a cylindrical pore, followin
closely the approach of Ref.@17#, and compare with the
theories just mentioned. We study the simplest example
biaxial molecular arrangement, namely, the disclination
fect of strength11 corresponding to a uniform, cylindrically
symmetric, splay deformation of the director far from th
core. This is imposed by choosing homeotropic anchor
conditions at the cylinder pore walls.

We take care to check the equilibration of our simu
tions, and note that quite extensive runs are required to
sure this. We also study in particular the effects of pore s
with radius varying from 2 to 5 times the molecular lengt
so as to eliminate the effects of the walls on the defect co
More precisely, our aim is to restrict these effects to tho
that arise from the planar radial far-field structure, rather th
from density and order-parameter variations in the imme
ate vicinity of the walls. It is well known that the pore radiu
504 ©2000 The American Physical Society
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PRE 61 505MOLECULAR SIMULATION AND THEORY OF A LIQUID . . .
plays a critical role in determining the stability of differe
nematic structures in this geometry. An analysis of the e
tic free energy shows that the ‘‘escaped radial’’ structure
which the director bends over to become parallel with
symmetry axis in the core region, is the stable structure
large pore radius@19,20#. In analyzing experiments on nem
atic liquid crystals in cylindrical pores, Crawfordet al.
@21,22# show that at small pore radii, the escaped struct
~which will also, in general, have point defects along t
disclination line! is not the most stable; they discuss the p
nar radial and planar polar configurations, finding the la
to be stable for the parameter values that they survey.

A unified presentation of the different theories is given
Sec. II. The model, and simulation techniques, are set ou
Sec. III. The observed structures are described in Sec.
along with theoretical fits to the order parameter profiles
discussion of the results, and the validity of the theori
together with some concluding remarks, appear in Sec.

II. PHENOMENOLOGICAL MODELS

In the framework of the continuum theory, the system c
be described by the Landau–de Gennes free-energy de
@2#:

F5ku¹Qu21s~Q!, ~1!

wheres(Q) is a function of the invariants ofQ, the sym-
metric order tensor. This is the suitably normalized tracel
part of the tensorM of the second moments of the molecul
orientational distribution functionf,

M5E f ~u!u^ udV.

Q5 3
2 M2 1

2 I , ~2!

whereI is the unit tensor and the integration is over the u
sphere.

We exclude the escape of the director in thez direction,
and our boundary conditions also prevent spiral configu
tions, so the eigenvectors ofQ coincide with the unit vectors
of the cylindrical geometry, namely,er , eu , andez , respec-
tively, in the radial, tangential, and axial directions. Since
eigenvalues ofQ are not independent, the tensor may
expressed in terms of two independent parameters: the o
parameterS and biaxialitya @5#:

Q[Qrrer ^ er1Quueu ^ eu1Qzzez^ ez

5Ser ^ er1~2 1
2 S1 3

2 a!eu ^ eu1~2 1
2 S2 3

2 a!ez^ ez .

~3!

Minimizing the full free-energy functional~1! with re-
spect to theS, a and taking into account thatS5S(r),
a5a~r!, wherer is the distance from the cylinder axis, w
obtain the following Euler-Lagrange equations:

~rS8!823r21~S2a!23g1~S,a!50,
~4!

~ra8!81r21~S2a!2g2~S,a!50.
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Here g1(S,a)5 2
9 k21]s/]S, g2(S,a)5 2

9 k21]s/]a, and
the prime denotes differentiation with respect tor.

The system of equations~4! should be solved with corre
sponding boundary conditions. The boundary conditions
r50 can be obtained if we look for the solutions close to t
center of the disclination line. Indeed, in the limitr→0, we
can neglect the functionsg1 ,g2 in Eqs. ~4!. Then, seeking
the solution as an expansion in powers ofr, one can obtain
that in the region close to the center of the disclination l
the solutions are

S5S013gr2, a5S02gr2, ~5!

whereS0 andg are constants. Therefore, atr50, we have

S8ur5050, a8ur5050. ~6!

We also assume that, far away from the disclination core,
have a uniaxial nematic, and the surface atr5R provides the
order parameterSs :

Sur5R5Ss , aur5R50. ~7!

Some general properties of Eqs.~4!, regardless of the ex
plicit form of the functionsg1 ,g2 , can help us to fit the
simulation results. The simulations provide the value of
order parameter on the disclination lineS0 , which we can
also derive analytically. Indeed, the solutions~5! imply that
S13aur→05const. The condition that the energy is bound
requires alsoS05a0 . Therefore, from Eq.~4! we obtain the
implicit equation for the order-parameter value on the dis
nation line

g1~S0 ,S0!1g2~S0 ,S0!50. ~8!

Now we consider the particular models.

A. Full free-energy expansion

A widely used formula fors is Landau–de Gennes’:

sLG5a Tr Q22b Tr Q31c@Tr Q2#2, ~9!

wherea is assumed to depend linearly on the temperatu
whereas positive constantsb,c are considered temperatur
independent. For this free energy, theuniaxial nematicstate
is stable whenb2.24ca with the degree of orientationa
ordering

Sb5
b

8c S 11A12
64ca

3b2 D . ~10!

Taking into account the parametrization~3!, the suitably res-
caled potential~9! may therefore be rewritten as

sLG5k$S2~ 1
2 S22 2

3 S~Sb1Su!1SbSu!

1a2@3SuSb16~Su1Sb!S13S21 9
2 a2#%, ~11!

so that the turning points for the uniaxial nematic phase w
a50 occur atS5Su ,Sb .



ax

pa
-

he

l

cl

is

th
o
r,
te

ids

l
ily

to
sity
ly
ked

us
d

be
-

l to
ng
try

en-
y-

of
.

the

is
ce
d
ns-
rea-

ity
h
v-

into

ten-
a-
r
the
es
This
,

r

506 PRE 61DENIS ANDRIENKO AND MICHAEL P. ALLEN
The functionsg1 ,g2 then read

l2g15SuSbS1~Su1Sb!$3a22S2%1S$3a21S2%,
~12!

l2g253SuSba16~Su1Sb!Sa13a$3a21S2%,

where l25 9
4 k/k is the characteristic length. Equation~8!

provides us with the values of the order parameter and bi
ality on the disclination line:

S05a052 1
2 Su . ~13!

B. Biscari and Virga approach

In order to obtain analytical expressions for the order
rameter profile, Biscari and Virga@5# used a quadratic ap
proximation to the full free energys, expressed in terms ofS
anda,

sBV5k$h~S2Sb!21a2%, ~14!

with the following expressions for the functionsg1 ,g2 :

g15
h

l2 ~S2Sb!, g25
1

l2 a.

The order parameter at the center of the disclination line t
reads

S05
h

11h
Sb . ~15!

C. Mottram and Hogan approach

Another model, considered by Mottram and Hogan@6#
uses a quartic potential inS but retains a quadratic potentia
in a

sMH5k$hS2@ 1
2 S22 2

3 S~Sb1Su!1SbSu#1a2%. ~16!

This potential provides the following functionsg1 ,g2 :

g15
h

l2 S~S2Su!~S2Sb!, g25
1

l2 a,

and the following value of the order parameter on the dis
nation line:

S05 1
2 $Su1Sb6A~Su2Sb!224h21%. ~17!

D. Maier-Saupe approach

Another mean-field approach to the description of the d
clination line was considered by Sigilloet al. @7#. They ap-
plied Maier-Saupe theory and obtained expressions for
functions g1 ,g2 . The Maier-Saupe theory has an interm
lecular potential strengthU as the only adjustable paramete
determining the correct value of the bulk order parame
Sb(U). The value of the order parameterS0 on the disclina-
tion line is then fixed and determined by the value ofSb .
i-
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III. MOLECULAR MODEL AND SIMULATION METHODS

The molecules in this study are modeled as hard ellipso
of revolution of elongatione5A/B515, whereA is the
length of the major axis andB the length of the two equa
minor axes. The phase diagram and properties of this fam
of models are well studied@23–26,10#. Units of length are
chosen such thatAB251, making the molecular volume
equal to that of a sphere of unit diameter. It is useful
express the density as a fraction of the close-packed den
for perfectly aligned hard ellipsoids, assuming an affine
transformed face-centered-cubic or hexagonal-close-pac
lattice; in reduced units%cp* 5%cpAB25&. Henceforth, the
asterisks denoting reduced quantities will be omitted.

The molecules were confined within a cylinder of radi
R, and heightH, with periodic boundary conditions applie
in the z direction ~the symmetry axis!. The cylindrical con-
fining walls are defined by the condition that they cannot
penetrated by thecentersof the ellipsoidal molecules. Pack
ing considerations generatehomeotropicordering at the sur-
face, i.e., the molecules prefer to orient themselves norma
the interface, without the need to apply an explicit orderi
field. The properties of such surfaces in planar geome
were investigated previously@16#. For these particles, the
isotropic-nematic phase transition occurs at quite low d
sity, %/%cp'0.2. Temperature is not a significant thermod
namic quantity in this model; we setkBT51 throughout.

Monte Carlo simulations were carried out for systems
the following cylinder radii:R/A52.08, 2.67, 4.00, 5.33
The corresponding numbers of ellipsoids wereN53500,
6000, 13 000, 22 000. The heightH/A was in the range 2.6–
2.8 in all cases. All the simulations were conducted at
same state point used in the earlier study@16#, corresponding
to a bulk pressureP52.0 in the above reduced units; this
significantly higher than the isotropic-nematic coexisten
pressureP'1.49 @27#. No external fields were applied, an
conventional Monte Carlo moves were employed, with tra
lational and rotational displacements chosen to give a
sonable acceptance rate.

The simulation results were analyzed to give a dens
profile, averaged over cylindrical shells of widt
0.125B– 0.25B, and an order tensor profile obtained by a
eraging

Qab~r i !5K 1

ni
(
j 51

ni H 3

2
uj auj b2

1

2
dabJ L , a,b5r,u,z,

where there areni molecules present in bini ;dab is the
Kronecker delta. The axis system is resolved as before
radial ~r!, tangential~u!, and axial~z! components, for the
purposes of accumulating these functions. Therefore, the
sor componentsQab have been averaged over global rot
tions of the system~positions and orientations togethe!
about the symmetry axis, as well as global translations in
z direction. Diagonalizing this tensor, for each bin, giv
three eigenvalues and three corresponding eigenvectors.
procedure allows us to test for~a! the planar radial structure
for which the eigenvectors lie along ther, u, z coordinate
axes, independent ofr, and the eigenvalues areQrr(r),
Quu(r), Qzz(r), and ~b! the escaped radial structure, fo
which one of the eigenvectors points along theu direction
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PRE 61 507MOLECULAR SIMULATION AND THEORY OF A LIQUID . . .
for all values ofr, and the other two lie in ther, z plane,
changing their orientation asr varies.

The above tensor is not sensitive to any breaking of a
symmetry: instead, it gives a cylindrical average. To give
full representation of the positional variation of the orien
tional order, we must retain the full spatial dependence ofQ.
We find it convenient to calculate

Sab~r !5
1

nR
(
j PR

uj auj b a,b5x,y,z, ~18!

where the sum is conducted over thenR molecules found to
be in a neighborhoodR of the chosen pointr . The eigenvec-
tors of thisS tensor are the same as those of the correspo
ing Q; the eigenvalues are linearly related and are nonne
tive, so the tensor may be visually represented as a sphe
whose principal axis directions and lengths are given by
eigenvectors and corresponding eigenvalues@28#. Then, a
well ordered uniaxial region appears as an elongated, pro
shape; the uniaxial core of a disclination defect of stren
11 would appear as an oblate spheroid with its symme
axis along the axis of the cylinder; disordered regions wo
correspond to a spherical shape, and so on.

FIG. 1. Time evolution of a system started from a perfect pla
radial configuration, in a cylinder of radiusR/A52.67. We show
order-tensor eigenvalue profiles averaged over 105 sweeps, taken a
the indicated times~units of 106 sweeps!. The top eigenvalue is
Qrr , the middle oneQuu , and the bottom oneQzz in each case. In
the upper panel we plot the biaxiality parametera5

1
3 (Quu

2Qzz). Note that the biaxial core develops quite rapidly and t
equilibration is essentially complete between 0.4 and 0.83106

sweeps. The final equilibrium configuration is identical to that o
tained from a disordered starting configuration. The shaded ell
indicates the outermost, homeotropically anchored, layer at the
inder wall.
l
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IV. SIMULATION RESULTS

Most results were obtained from starting configurations
which the ellipsoids were positioned randomly, avoidi
overlaps, but were perfectly aligned in the planar radial c
figuration. Typical equilibration times for these systems we
around 73105 MC sweeps~one sweep is one attempte
move per particle!, and this was monitored through the or
entation profiles defined above. The development of a bia
core in the system withR/A52.67 is shown in Fig. 1; the
other systems evolved in a similar way. Following equilibr
tion, production runs of approximately 53105 MC sweeps
were undertaken.

Checks for convergence were carried out, starting fr
configurations in which molecular orientations as well as p
sitions were disordered. The time evolution of theR/A
52.67 system is shown in Fig. 2. Note that the orderi
remains uniaxial at the boundary, and propagates in towa
the center; as the ordering reaches the center, the bia
disclination core develops. An equilibration period of 16

sweeps was needed to reach the equilibrium planar ra
structure, and a subsequent production run of 23105 sweeps
yielded results identical to those obtained from the pla
radial starting point. For the larger cylinder radii, simil
behavior was observed, but the time scale for propagatio
the order from the boundary to the center was correspo
ingly longer. In each case, a run was conducted which wa
sufficient length to confirm that the correct structure w
becoming established.

r

t

-
se
l-

FIG. 2. Time evolution of a system started from an orientatio
ally disordered configuration, in a cylinder of radiusR/A52.67.
Notation as in Fig. 1. Note that the ordering remains uniaxial at
boundary and propagates in towards the center; as the orde
reaches the center, the biaxial disclination core develops. The
equilibrium configuration is identical to that obtained from a plan
radial starting configuration.
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508 PRE 61DENIS ANDRIENKO AND MICHAEL P. ALLEN
In no case was the escaped radial structure formed du
these runs. We have carried out some preliminary tests
the pores of smaller radius,R/A52.08, 2.67, in which the
escaped radial structure was stabilized by the application
uniform orienting field favoring alignment along the cylind
axis. Following removal of this field, the planar structure w
seen to be recovered on a simulation time scale of 53105

sweeps. Thus, the planar structure is thermodynamic
stable for these cases, and it appears to be at least meta
on the time scales of our simulations for the larger pores

In Fig. 3 the order-parameter profiles are presented fo
the different cylinder sizes. The biaxiality profilea(r)
5 1

3 (Quu2Qzz) indicates the extent of the core region. F
the two smallest cylinders, it is clear that the walls act
deform the disclination core. ForR/A52.08, the core region
is enlarged, while forR/A52.67 it is compressed. The re
sults for the two largest cylinders are almost indistingui
able.

In Fig. 4 we show the order tensor variation in th
xy plane ~no variation with z coordinate was observed!
for the core region in theR/A54.00 case. TheS-tensor
spheroid of Eq.~18! is plotted at a number of points (xs ,ys)
which lie on circles centered on the cylinder axis, separa
by 0.25A, with the neighborhoodR of each point defined to
include all molecules whose centers~x,y,z! satisfy
A(x2xs)

21(y2ys)
2,0.25A. The tensors are averaged ov

a run of 105 sweeps. The figure indicates that the core
actually best described as a pair of disclinations each
strength 11/2, symmetrically arranged atr/A'121.25
from the cylinder axis. Very similar results are seen for

FIG. 3. Equilibrium order-tensor eigenvalue profiles for cyli
ders of indicated radii. For the two smallest cylinders, the wa
clearly have an effect on the defect core structure; the results fo
two largest cylinders are essentially indistinguishable. Notation
in Fig. 1.
ng
or
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ly
able
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the three largest pores,R/A52.67, 4.00, 5.33, while for the
smallest pore,R/A52.08, the defects are slightly further ou
at r/A'1.5. There is a small region of almost unperturb
uniaxial nematic liquid crystal aroundr'0, with the director
perpendicular to the cylinder axis. We note that similar d
fect pairs are seen in the two-dimensional simulations
ported in Ref.@18#.

The order-tensor profiles reported in Fig. 3 are prope
regarded as axial averages of structures which are not th
selves axially symmetric on the time scales of the simulati
This is why the lowest eigenvalue in the profiles of Fig.
adopts similar values inside and outside the core: it co
sponds to the eigenvector along the cylinder axis, and
unaffected by the axial averaging. We discuss in Sec. V
validity of carrying out such an axial average, simply noti
here that it is the most straightforward way of comparing o
simulation results with theories that assume cylindrical sy
metry.

We have fitted the results forR/A54.00 using the phe-
nomenological theories of Sec. II. In each case,
boundary-value problem of Eqs.~4!, ~6!, ~7!, was solved us-
ing the relaxation method@29#. In Figs. 5, 6, the fitting
curves and the original simulation data are shown. Note,
to fit the simulation data we first determined the value of
parameterh or Su using Eqs.~13!, ~15!, ~17!. Then we per-
formed suitable rescaling, changing the factorl.

V. DISCUSSION

One can see in Figs. 5 and 6 that the slope of the fitt
curves in general reflects the structure of the core: the ce
of the core is strongly biaxial, extending over a few units
length, as shown by the splitting of the eigenvaluesQuu ,
Qzz, and hence the nonzero biaxiality parametera~r!. At the
same time, the difference between the descriptions is
evident. Biscari and Virga’s theory gives an incorrect sha

s
he
s

FIG. 4. Distribution of order tensor in the plane perpendicular
the cylinder axis, in the core region, for the caseR/A54.00. Con-
centric circles at half-integer intervals of radiusr/A are plotted as a
guide. The spheroid sizes are not physically significant. The fig
is oriented so that the1 1

2 defects lie above and below the cylinde
axis.
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PRE 61 509MOLECULAR SIMULATION AND THEORY OF A LIQUID . . .
of S(r) for small values ofS ~and hence small values ofr
here!. This is fairly predictable, since a quadratic expans
of the free-energy densityF;h(S2Sb)2 was used, which is
valid only for small deviations of the order parameter fro
the bulk valueSb .

The more sophisticated form of the free energy used
Mottram and Hogan~up to fourth order inS! corrects the
slope of the curve for the order parameterS5Qrr . How-
ever, the biaxial partQuu2Qzz, still has only qualitative
agreement with the simulation results, which is probably
cause of thequadratic approximation to the biaxial part o
the free energy. This is particularly apparent in thea~r! pro-
file, in which the biaxiality extends far beyond the core r
dius which would be deduced fromQrr .

In spite of having only one adjustable parameter,
Maier-Saupe theory of Sigilloet al. gives a very realistic
description of the disclination core structure. However,
predicts slightly lower core biaxiality than that obtained
the simulations.

The most accurate fitting we obtained used the full exp
sion of the free energy in powers of the order-parame
tensor~9!, as shown in Fig. 6. This form, originally used b
Schopohl and Sluckin, manages to reproduce the overal
tent of the biaxial region quite well, while fitting the limiting
behavior of botha~r! andS(r) asr→0, and the magnitude

FIG. 5. Fits of simulation results~solid lines! to theoretical pre-
dictions discussed in the text. The best fit in each case was obta
for the following parameters: Mottram, Hogan@6# ~dotted lines!:
Eq. ~16!, with h/l251.58, l2251, R56.5, Sb50.88, Ss50.82,
Su50.01. Biscari, Virga@5# ~dashed lines!: Eq. ~14!, with h/l2

51, l2253.4, R56, Sb50.88,Ss50.82. Sigillo, Greco, Marrucci
@7# ~long dashed lines!: U513, Ss50.82, R57. Notation as in
Fig. 1.
n

y

-

-

e

t

-
r

x-

of S in the bulk. Therefore, we can conclude that all t
terms in the free-energy expansion~or at least up to the
fourth order in the order-parameter tensor! should be taken
into account if one wants to make the correctquantitative
description of the disclination core structure.

Figure 4 shows that the core structure seen on the si
lation time scale is not, in fact, cylindrically symmetrica
and this raises questions regarding the validity of averag
the order tensor over rotations about the cylinder axis. S
averaging may arise in a natural way. We see a small amo
of rotation of the defect pair around the axis, of the order
10°–15°, as the core structure evolves in time, during th
3105-sweep simulation runs conducted here. If we roug
equate this to a real-time period of the order of nanoseco
it seems possible that significant rotation will occur on t
experimental time scale. The situation is further complica
when one considers correlations along thez direction; the
periodic box employed here is quite small, but use of a mu
longer cylindrical pore might reveal some twisting of th
separate11

2 defect lines about the cylinder axis. Both effec
would result in the kind of cylindrical averaging which w
have carried out, but we can currently only speculate on t

A second question concerns the distance between the11
2

defect lines. We do not observe separation of the defect p
either as the simulations proceed in time or as we st
larger pores. Nonetheless, it is quite possible that the p
walls are confining the defect pair to the vicinity of the ax
and that they might separate if a much larger system w
simulated. We note that, if they were to completely separ

ed
FIG. 6. Fit of simulation results~solid lines! to the Landau–de

Gennes free-energy expansion~11! using the approach of Schopoh
and Sluckin @3,4# ~dashed lines!. The best fit in each case wa
obtained forl2251.42,R56, Sb50.88,Ss50.82,Su520.4. No-
tation as in Fig. 1.
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and approach the pore walls, the result would be the pla
polar structure discussed elsewhere@21,22#. It would be in-
teresting to calculate free energies as a function of the de
separation to investigate this.

Finally, we may expect the escaped radial structure
become increasingly favored as the pore radius increase
is clearly not the most stable structure for the smallest po
studied here. Once more, free-energy calculations are ne
to make a proper comparison. Further work on these asp
is in progress.
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