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Molecular simulation and theory of a liquid crystalline disclination core
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Molecular simulations of a nematic liquid crystal confined in cylinder geometry with homeotropic anchoring
have been carried out. The core structure of a disclination line defect of strefigtfas been examined, and
comparison made with various theoretical treatments, which are presented in a unified way. It is found that
excellent fits to the cylindrically symmetrized order tensor profiles may be obtained with appropriate parameter
choices; notwithstanding this, on the time scales of the simulation, the cylindrical symmetry of the core is
broken and two defects of streng%h% may be resolved.

PACS numbsefs): 61.30.Cz, 61.30.Jf, 61.20.Ja, 07.05.Tp

I. INTRODUCTION and Sluckin to obtain the order parameter profiles near the
disclination line. We also recapitulate the results of the other
Liquid crystals are at the heart of a range of technologicatheories in order to discuss the advantages and disadvantages
devices that rely on the ability to manipulate the direction ofof the proposed models. We compare these predictions with
preferred molecular alignment, thBrector n, with electric  the results of computer simulation using a simple molecular
and magnetic fields, and through coupling to surfaces. Thenodel. Computer simulation is a well established method of
practical performance of such devices and the theoretical deelating bulk elastic coefficients8—14], and more recently
scription of director distortions both rely on smooth variationsurface anchoring strengtfi$5,16], to molecular structure
of the director with position in space; this is well accountedand interaction parameters. An early study of disclination
for by the Frank free enerdyl,2], which is an expansion in line defects[17] involved Monte Carlo simulations of rod-
squared gradients of the director figifr), parametrized by like molecules(hard spherocylindeysonfined in cylindrical
the splay Kjq), twist (K,y), and bend K33) elastic con- geometry with boundary conditions chosen to stabilize the
stants. The directon is the principal axis of the local chosen director field far from the defect. This work concen-
second-rank ordering tens@;, which characterizes the nem- trated on the disclination line defect of strength, in cyl-
atic state; such a description is intrinsically uniaxial and neinders of radius 2—3 times the molecular length. For short
glects variation of thedegreeof ordering with position, of rods, smooth variation of the order parameters with position
the kind that occurs near bounding surfaces and around tavas observed, and the defect core retained axial symmetry.
pological defects. Such defects are treated as singularities or longer rods, having much larger bend elastic constants,
the director field; for a better description, it is necessary tahis symmetry was broken, and various microscopically “es-
replace the director field with one that allows some variationcaped” structures were seen. There was also evidence of
of the relevant order tensor components over relatively shometastability, and nonconvergence of structures from differ-
length scales. The relevant region near the defect is calle@nt starting configurations, which the authors attempted to
the core resolve using free-energy calculations. More recently, a
The most common type of defect in the nematic phase istudy of two-dimensional models has been carried[t8}.
the disclination line defect, characterized by an integer ofThese studies support the view that the disclination core is
half-integer index defined by the number of turns of the di-one or two molecular lengths across.
rector field associated with taking a circuit about the line. The purpose of this paper is to present simulation results
The phenomenological approach to the investigation of lindor a model of hard particles in a cylindrical pore, following
defects was described by Schopohl and Slu¢Rid]. They  closely the approach of Refl7], and compare with the
worked with the full order-parameter tens@,; in the theories just mentioned. We study the simplest example of
framework of Landau—de Gennes theory, and applied this thiaxial molecular arrangement, namely, the disclination de-
the structure of ther 3 disclination core. Théull order pa-  fect of strength+1 corresponding to a uniform, cylindrically
rameterQ,, was used(@ to avoid divergentterms in the  symmetric, splay deformation of the director far from the
elastic energy an¢b) to take into account possiblgaxiality ~ core. This is imposed by choosing homeotropic anchoring
of the defect core. Then the general idea was implementeconditions at the cylinder pore walls.
for the particular problem of the core structure of théd We take care to check the equilibration of our simula-
strength defect: Biscari and Virggb] and Mottram and tions, and note that quite extensive runs are required to en-
Hogan[6] solved the equations for the order tensor and obsure this. We also study in particular the effects of pore size,
tained order parameter and biaxiality profiles. They usedvith radius varying from 2 to 5 times the molecular length,
truncated expansions of the free-energy density, whiclso as to eliminate the effects of the walls on the defect core.
helped them to obtain analytical solutions to the problemMore precisely, our aim is to restrict these effects to those
Finally, Sigillo etal. [7] considered the+1 disclination that arise from the planar radial far-field structure, rather than
problem in the spirit of Maier-Saupe mean-field theory. from density and order-parameter variations in the immedi-
In this paper we use the approach proposed by Schopolalte vicinity of the walls. It is well known that the pore radius
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plays a critical role in determining the stability of different Here g,(S,a)=%«"190/S, g,(S,a)=3« 1do/da, and

nematic structures in this geometry. An analysis of the elasthe prime denotes differentiation with respecipto

tic free energy shows that the “escaped radial” structure, in  The system of equation@) should be solved with corre-

which the director bends over to become parallel with thesponding boundary conditions. The boundary conditions at

symmetry axis in the core region, is the stable structure fop=0 can be obtained if we look for the solutions close to the

large pore radiu§l9,20. In analyzing experiments on nem- center of the disclination line. Indeed, in the limpit-0, we

atic liquid crystals in cylindrical pores, Crawfordtal. can neglect the functiong;,g, in Egs.(4). Then, seeking

[21,22 show that at small pore radii, the escaped structure¢he solution as an expansion in powersppne can obtain

(which will also, in general, have point defects along thethat in the region close to the center of the disclination line

disclination ling is not the most stable; they discuss the pla-the solutions are

nar radial and planar polar configurations, finding the latter

to be stable for the parameter values that they survey. S=Sy+3yp%,  a=Sy— yp? (5)

A unified presentation of the different theories is given in

Sec. IIl. The model, and simulation techniques, are set out ilvhereS, and y are constants. Therefore, @0, we have

Sec. Ill. The observed structures are described in Sec. IV,

along with theoretical fits to the order parameter profiles. A s’|p=0:0, a’|p=0=0. (6)

discussion of the results, and the validity of the theories,

together with some concluding remarks, appear in Sec. V. We also assume that, far away from the disclination core, we
have a uniaxial nematic, and the surface &tR provides the

Il. PHENOMENOLOGICAL MODELS order paramete®;:

In the framework of the continuum theory, the system can S,_r=S., a|,_g=0. 7
be described by the Landau—de Gennes free-energy density ? P

[2]: Some general properties of Eqd), regardless of the ex-
5 plicit form of the functionsg;,g,, can help us to fit the

F=«[VQI*+a(Q), 1) simulation results. The simulations provide the value of the
order parameter on the disclination lilgg, which we can
also derive analytically. Indeed, the solutiaf®s imply that
g4 3a|pﬁo=const. The condition that the energy is bounded
requires als@&y= «q. Therefore, from Eq(4) we obtain the
implicit equation for the order-parameter value on the discli-
nation line

where o(Q) is a function of the invariants of, the sym-
metric order tensor. This is the suitably normalized traceles
part of the tensoM of the second moments of the molecular
orientational distribution functiof,

M =f f(uyueudQ.
91(S0,Sp) +92(Sp,Sp) = 0. 8

Q=3M—3l, (20 Now we consider the particular models.

wherel is the unit tensor and the integration is over the unit

sphere. . :
We exclude the escape of the director in theirection, A widely used formula foro is Landau—de Gennes’:

and our boundary conditions also prevent spiral configura- ) 3 22

tions, so the eigenvectors f coincide with the unit vectors oLe=aTrQ =bTrQ +c[TrQ7J%, ©

of the cylindrical geometry, namelg, , e,, ande,, respec- , .
tively, in the radial, tangential, and axial directions. Since theVherea is assumed to depend linearly on the temperature,

eigenvalues ofQ are not independent, the tensor may beyvhereas positive cqnstanbsc are con;id_ered temperature
expressed in terms of two independent parameters: the ord&ldependent. For this free energy, thiaxial nematicstate

A. Full free-energy expansion

parametesS and biaxiality a [5]: is stable wherb?>24ca with the degree of orientational
ordering
QEQppep®ep+Q96’eO®eﬁ+ QZZeZ®eZ b Blc
a
=Se,®e,+(—3S+3a)e@e+(—3S-3a)e®e,. szg(lJr Vi-357) (10
3

Taking into account the parametrizati(8), the suitably res-
Minimizing the full free-energy functionall) with re-  caled potential9) may therefore be rewritten as
spect to theS « and taking into account thas=S(p),
a=a(p), wherep is the distance from the cylinder axis, we Cfe2lc2_ 2
obtain the following Euler-Lagrange equations: Te=KS (S 5SS S+ SS)
+ a?[3S,Sy+ 6(S,+S,)S+3S%+ 2221}, (11)
(pS')' —3p 1 (S—a)—304(S,a)=0,
(4 so that the turning points for the uniaxial nematic phase with
(pa’) +p YS—a)—g,(S,a)=0. =0 occur atS=S,,S,.
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The functionsg,,g, then read Ill. MOLECULAR MODEL AND SIMULATION METHODS

24 _ ) 2, 2 The molecules in this study are modeled as hard ellipsoids
N01=8,SSH (S $){8a" =S} + 5307+ ST, of revolution of elongatione=A/B=15, whereA is the
P 21 o2 (12) length of the major axis anB the length of the two equal
\g2=3S5,Spa+6(Sy+Sp)Sa+3a{3a’+ S, minor axes. The phase diagram and properties of this family
s g . o ) of models are well studief23-26,1Q0. Units of length are
where \“=z«/k is the characteristic length. Equatid)  chosen such thaAB2=1, making the molecular volume
provides us with the values of the order parameter and biaxiéqua| to that of a sphere of unit diameter. It is useful to

ality on the disclination line: express the density as a fraction of the close-packed density
. for perfectly aligned hard ellipsoids, assuming an affinely
So=@o=—2S;- (13 transformed face-centered-cubic or hexagonal-close-packed
lattice; in reduced unit@§p=QCpABZ=1/2. Henceforth, the
B. Biscari and Virga approach asterisks denoting reduced quantities will be omitted.

The molecules were confined within a cylinder of radius
R, and heightH, with periodic boundary conditions applied
in the z direction (the symmetry axis The cylindrical con-
fining walls are defined by the condition that they cannot be
penetrated by theentersof the ellipsoidal molecules. Pack-

_ a2y .2 ing considerations generat@meotropicordering at the sur-
Tay=Ki7(S=S)"+ e (149 face, i.e., the molecules prefer to orient themselves normal to
the interface, without the need to apply an explicit ordering
field. The properties of such surfaces in planar geometry
” 1 were investigated previously16]. For these particles, the
0,=3(S-S,), gr,=—3a. isotropic-nematic phase transition occurs at quite low den-

A A sity, ¢/@,~0.2. Temperature is not a significant thermody-

o namic quantity in this model; we s&T=1 throughout.
The order parameter at the center of the disclination line then \ionte Carlo simulations were carried out for systems of

In order to obtain analytical expressions for the order pa
rameter profile, Biscari and Virggb] used a quadratic ap-
proximation to the full free energy, expressed in terms &
and a,

with the following expressions for the functiogg,g,:

reads the following cylinder radii:R/A=2.08, 2.67, 4.00, 5.33.
The corresponding numbers of ellipsoids we¥e= 3500,
50=L . (15) 6000, 13000, 22 000. The heigHf A was in the range 2.6—
1+7 2.8 in all cases. All the simulations were conducted at the

same state point used in the earlier st{itl§], corresponding
to a bulk pressur®=2.0 in the above reduced units; this is
significantly higher than the isotropic-nematic coexistence
Another model, considered by Mottram and Hod&h  pressureP~1.49[27]. No external fields were applied, and
uses a quartic potential i@ but retains a quadratic potential conventional Monte Carlo moves were employed, with trans-
in a lational and rotational displacements chosen to give a rea-
sonable acceptance rate.
oun=k{7S[:S° - 5S(Sy+S)) + SSul+ e} (16) The simulation results were analyzed to give a density
profile, averaged over cylindrical shells of width
This potential provides the following functiongs ,g,: 0.128-0.28, and an order tensor profile obtained by av-
eraging

C. Mottram and Hogan approach

1
01=;2S(5-8)(5-S), Go=yza, L0 (3 L
Quplp)={ — > [Eujaujﬁ_zéaﬁ] , a,B=p,0,z,

nij=1

and the following value of the order parameter on the discli-
nation line: where there aren; molecules present in bim; 8, is the
Kronecker delta. The axis system is resolved as before into
So=3HSu+ S V(S,—Sp)?— 47 1. (170 radial (p), tangential(#), and axial(z) components, for the
purposes of accumulating these functions. Therefore, the ten-
sor component®),, have been averaged over global rota-
tions of the system(positions and orientations together

Another mean-field approach to the description of the disabout the symmetry axis, as well as global translations in the
clination line was considered by Sigillet al. [7]. They ap- z direction. Diagonalizing this tensor, for each bin, gives
plied Maier-Saupe theory and obtained expressions for ththree eigenvalues and three corresponding eigenvectors. This
functionsg;,g,. The Maier-Saupe theory has an intermo- procedure allows us to test f¢&) the planar radial structure,
lecular potential strengtbl as the only adjustable parameter, for which the eigenvectors lie along the 6, z coordinate
determining the correct value of the bulk order parameteaxes, independent gf, and the eigenvalues a®@,,(p),
Sy (U). The value of the order parametg on the disclina- Qgy(p), Q,Ap), and (b) the escaped radial structure, for
tion line is then fixed and determined by the valueSgf which one of the eigenvectors points along thelirection

D. Maier-Saupe approach
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eigenvalues
eigenvalues

p/A p/A

FIG. 1. Time evolution of a system started from a perfect planar  FIG. 2. Time evolution of a system started from an orientation-
radial configuration, in a cylinder of radiu’/ A=2.67. We show ally disordered configuration, in a cylinder of radiBsA=2.67.
order-tensor eigenvalue profiles averaged ovérsifeeps, taken at  Notation as in Fig. 1. Note that the ordering remains uniaxial at the
the indicated timegunits of 1¢ sweeps The top eigenvalue is boundary and propagates in towards the center; as the ordering
Q,, the middle on&),,, and the bottom on®,, in each case. In  reaches the center, the biaxial disclination core develops. The final
the upper panel we plot the biaxiality parameter3(Q,, equilibrium configuration is identical to that obtained from a planar
—Q,,). Note that the biaxial core develops quite rapidly and thatradial starting configuration.
equilibration is essentially complete between 0.4 andxQ.&
sweeps. The final equilibrium configuration is identical to that ob- IV. SIMULATION RESULTS
tained from a disordered starting configuration. The shaded ellipse

indicates the outermost, homeotropically anchored, layer at the cyl- Most results were obtained from starting configurations in
inder wall. which the ellipsoids were positioned randomly, avoiding

overlaps, but were perfectly aligned in the planar radial con-
for all values ofp, and the other two lie in the, z plane, figuration. Typical equilibration times for these systems were
changing their orientation gsvaries. around 7><105_MC sweeps(one sweep is one attempte_d
The above tensor is not sensitive to any breaking of axiaMove per particlg and this was monitored through the ori-
symmetry: instead, it gives a cylindrical average. To give s€ntation profiles defined above. The development of a biaxial
full representation of the positional variation of the orienta-core in the system witR/A=2.67 is shown in Fig. 1; the

tional order, we must retain the full spatial dependenc@of Other systems evolved in a similar way. Following equilibra-
We find it convenient to calculate tion, production runs of approximately>510° MC sweeps

were undertaken.
1 Checks for convergence were carried out, starting from
Sup(r)=— 2 UiUjg @ B=XY.Z (18) configurations in which molecular orientations as well as po-
NRjeRr sitions were disordered. The time evolution of tR2A
=2.67 system is shown in Fig. 2. Note that the ordering
where the sum is conducted over thg molecules found to remains uniaxial at the boundary, and propagates in towards
be in a neighborhoo® of the chosen point. The eigenvec- the center; as the ordering reaches the center, the biaxial
tors of thisS tensor are the same as those of the correspondiisclination core develops. An equilibration period of®10
ing Q; the eigenvalues are linearly related and are nonnegasweeps was needed to reach the equilibrium planar radial
tive, so the tensor may be visually represented as a spheroistructure, and a subsequent production run »fl2°> sweeps
whose principal axis directions and lengths are given by thgielded results identical to those obtained from the planar
eigenvectors and corresponding eigenval[28]. Then, a radial starting point. For the larger cylinder radii, similar
well ordered uniaxial region appears as an elongated, prolateehavior was observed, but the time scale for propagation of
shape; the uniaxial core of a disclination defect of strengthithe order from the boundary to the center was correspond-
+1 would appear as an oblate spheroid with its symmetryngly longer. In each case, a run was conducted which was of
axis along the axis of the cylinder; disordered regions wouldsufficient length to confirm that the correct structure was
correspond to a spherical shape, and so on. becoming established.
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K ——- R/A=4.00
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eigenvalues

FIG. 4. Distribution of order tensor in the plane perpendicular to
the cylinder axis, in the core region, for the cd&& =4.00. Con-
centric circles at half-integer intervals of radipA are plotted as a
guide. The spheroid sizes are not physically significant. The figure
is oriented so that the 3 defects lie above and below the cylinder
axis.

p/A

FIG. 3. Equilibrium order-tensor eigenvalue profiles for cylin- the three largest poreB/A=2.67, 4.00, 5.33, while for the
ders of indicated radii. For the two smallest cylinders, the wallsSmallest poreR/A=2.08, the defects are slightly further out,
clearly have an effect on the defect core structure; the results for that p/A~1.5. There is a small region of almost unperturbed
two largest cylinders are essentially indistinguishable. Notation aginiaxial nematic liquid crystal aroung~0, with the director
in Fig. 1. perpendicular to the cylinder axis. We note that similar de-

fect pairs are seen in the two-dimensional simulations re-

In no case was the escaped radial structure formed durin@ortid in Ref[18]. i - |
these runs. We have carried out some preliminary tests, for The order-te_nsor profiles reported in F|g._ 3 are properly
the pores of smaller radiu®/A=2.08, 2.67, in which the regarded as axial averages of structures which are not them-
escaped radial structure was stabilized by the application of ﬁil.v es axg;tlly;yrlnmetrlc on the t||me.sc:?]les of ]E.Te S|r?ul_at|on.
uniform orienting field favoring alignment along the cylinder Td|s IS W y_lt € ?west. e|%enva(l;e n Fde pk:o lles of Fig. 3
axis. Following removal of this field, the planar structure was®doPts similar values inside and outside the core: it corre-
seen to be recovered on a simulation time scale »fL68 sponds to the e|gen_vect0r alc_)ng the c_yllnder_aX|s, and is
sweeps. Thus, the planar structure is thermodynamical}ainaﬁemed by the axial averaging. We discuss in Sec. V the

stable for these cases, and it appears to be at least metast dity of.c.arrymg out such an axial average, simply noting
on the time scales of our simulations for the larger pores. Nere thatitis the most straightforward way of comparing our

In Fig. 3 the order-parameter profiles are presented for a|§imulation results with theories that assume cylindrical sym-

. . . T . try_
the different cylinder sizes. The biaxiality profile(p) me ) B .
=1(Q,,—Q,,) indicates the extent of the core region. For We have fitted the results fd®/A=4.00 using the phe-

the two smallest cylinders, it is clear that the walls act togomednologiclal theglries ?fE Sec. 6”. 7'” each Icage, the
deform the disclination core. F&/A=2.08, the core region oundary-value problem of Eg63), (6), (7), was solved us-

is enlarged, while folR/A=2.67 it is compressed. The re- ing the relaxatior_1 _meth_od29]._ In Figs. 5, 8, the fitting
sults for the two largest cylinders are almost indistinguish-U" V&> and the original simulation data are shown. Note, that
able. to fit the simulation data we first determined the value of the

In Fig. 4 we show the order tensor variation in the Parameter or S, using Eqs(13), (19, (17). Then we per-

Xy plane (no variation with z coordinate was observed formed suitable rescaling, changing the factor
for the core region in thdR/A=4.00 case. Thes-tensor
spheroid of Eq(18) is plotted at a number of pointxJ,y.)
which lie on circles centered on the cylinder axis, separated
by 0.25A, with the neighborhoo® of each point defined to One can see in Figs. 5 and 6 that the slope of the fitting
include all molecules whose center$x,y,2 satisfy curves in general reflects the structure of the core: the center
V(x—xg)?+ (y—ys)?<0.25A. The tensors are averaged over of the core is strongly biaxial, extending over a few units of
a run of 16 sweeps. The figure indicates that the core islength, as shown by the splitting of the eigenval@sg,,
actually best described as a pair of disclinations each of,,, and hence the nonzero biaxiality parametgs). At the
strength +1/2, symmetrically arranged gb/A~1-1.25 same time, the difference between the descriptions is also
from the cylinder axis. Very similar results are seen for allevident. Biscari and Virga’'s theory gives an incorrect shape

V. DISCUSSION
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FIG. 5. Fits of simulation resultgolid lineg to theoretical pre- FIG. 6. Fit of simulation resultssolid lineg to the Landau—de
dictions discussed in the text. The best fit in each case was obtainggennes free-energy expansidi) using the approach of Schopohl
for the following parameters: Mottram, Hoga6] (dotted lines: and Sluckin[3,4] (dashed lines The best fit in each case was
Eq. (16), with »/A?=1.58,\ ?=1, R=6.5, $,=0.88,S,=0.82,  obtained for\ 2=1.42,R=6, S,=0.88,5,=0.82,S,= —0.4. No-
S,=0.01. Biscari, Virga[5] (dashed lines Eq. (14), with 7/\? tation as in Fig. 1.

=1,A"%2=3.4,R=6, S,=0.88,5.=0.82. Sigillo, Greco, Marrucci ,
[7] (long dashed “ngbs U=138355=0.82 327_ Notation as in ©f Sin the bulk. Therefore, we can conclude that all the

Fig. 1. terms in the free-energy expansidor at least up to the
fourth order in the order-parameter tensshould be taken
into account if one wants to make the corregctantitative

of S(p) for small values ofS (and hence small values of  gescription of the disclination core structure.

herg. This is fairly predictable, since a quadratic expansion Figure 4 shows that the core structure seen on the simu-

of the free-energy densify~ (S—S,)? was used, which is  |ation time scale is not, in fact, cylindrically symmetrical,

valid only for small deviations of the order parameter fromand this raises questions regarding the validity of averaging
the bulk value S, . the order tensor over rotations about the cylinder axis. Such
The more sophisticated form of the free energy used bywveraging may arise in a natural way. We see a small amount

Mottram and Hogar(up to fourth order inS corrects the of rotation of the defect pair around the axis, of the order of

slope of the curve for the order parame®r Q,,. How-  10°-15°, as the core structure evolves in time, during the 5

ever, the biaxial parQg,—Q,,, still has only qualitative x 10°-sweep simulation runs conducted here. If we roughly

agreement with the simulation results, which is probably beequate this to a real-time period of the order of nanoseconds,
cause of theguadratic approximation to the biaxial part of it seems possible that significant rotation will occur on the
the free energy. This is particularly apparent in tip) pro-  experimental time scale. The situation is further complicated
file, in which the biaxiality extends far beyond the core ra-when one considers correlations along thédirection; the
dius which would be deduced fro@,, . periodic box employed here is quite small, but use of a much
In spite of having only one adjustable parameter, thdonger cylindrical pore might reveal some twisting of the
Maier-Saupe theory of Sigill@t al. gives a very realistic separatet 3 defect lines about the cylinder axis. Both effects
description of the disclination core structure. However, itwould result in the kind of cylindrical averaging which we
predicts slightly lower core biaxiality than that obtained in have carried out, but we can currently only speculate on this.
the simulations. A second question concerns the distance betweenr-the
The most accurate fitting we obtained used the full expaneefect lines. We do not observe separation of the defect pair,
sion of the free energy in powers of the order-parameteeither as the simulations proceed in time or as we study
tensor(9), as shown in Fig. 6. This form, originally used by larger pores. Nonetheless, it is quite possible that the pore

Schopohl and Sluckin, manages to reproduce the overall exvalls are confining the defect pair to the vicinity of the axis,

tent of the biaxial region quite well, while fitting the limiting and that they might separate if a much larger system were

behavior of botha(p) andS(p) asp—0, and the magnitude simulated. We note that, if they were to completely separate
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and approach the pore walls, the result would be the planar ACKNOWLEDGMENTS

polar structure discussed elsewhg2é,22]. It would be in-

teresting to calculate free energies as a function of the defect The advice of Nigel Mottram is gratefully acknowledged.

separation to investigate this. This research was supported by EPSRC, and by the Univer-
Finally, we may expect the escaped radial structure teity of Bristol Department of Physics. D.A. also acknowl-

become increasingly favored as the pore radius increases;atges support through Grant No. PSU082002 of the Interna-

is clearly not the most stable structure for the smallest poresonal Soros Science Education Program and Grant No. ORS/

studied here. Once more, free-energy calculations are need®8007015 of the Overseas Research Students Award. The

to make a proper comparison. Further work on these aspectaithors of Ref[18] are thanked for providing a preprint of

is in progress. their paper.
[1] F. C. Frank, Discuss. Faraday S@&, 19 (1958. (1997.
[2] P. G. de Gennes and J. Proshe Physics of Liquid Crystals [16] M. P. Allen, Mol. Phys.96, 1391(1999.
2nd ed.(Clarendon Press, Oxford, 1995 [17] S. D. Hudson and R. G. Larson, Phys. Rev. L&, 2916
[3] N. Schopohl and T. J. Sluckin, Phys. Rev. LeiB, 2582 (1993.
(1987). [18] J. Dzubiella, M. Schmidt, and H. lveen (unpublished
[4] N. Schopohl, Phys. Rev. Lett0, 755E) (1988. [19] P. E. Cladis and M. Kiman, J. Phys(Parig 33, 591 (1972.
[5] P. Biscari and E. G. Virga, Int. J. Nonlinear Mec32, 337  [20] M. KIéman,Points, Lines and Walls in Liquid Crystals, Mag-
(1997. netic Systems and Various Ordered Me@Mdiley, Chichester,
[6] N. J. Mottram and S. J. Hogan, Philos. Trans. R. Soc. London,  1983.
Ser. A355, 2045(1997). [21] G. P. Crawfordet al, Phys. Rev. Ad4, 2570(199)).
[7] 1. Sigillo, F. Greco, and G. Marrucci, Liq. CrysR4, 419 [22] G. P. Crawford, D. W. Allender, and J. W. Doane, Phys. Rev.
(1998. A 45, 8693(1992.
[8] M. P. Allen and D. Frenkel, Phys. Rev. 37, 1813(1988. [23] D. Frenkel, B. M. Mulder, and J. P. McTague, Phys. Rev. Lett.
[9] M. P. Allen and D. Frenkel, Phys. Rev. 42, 3641E) (1990. 52, 287(1984).
[10] B. Tjipto-Margo, G. T. Evans, M. P. Allen, and D. Frenkel, J. [24] D. Frenkel and B. M. Mulder, Mol. Phy®5, 1171(1985.
Phys. Chem96, 3942(1992. [25] M. P. Allen, Philos. Trans. R. Soc. London, Ser.344, 323
[11] M. P. Allen et al, J. Chem. Physl05, 2850(1996. (1993.
[12] J. Stelzer, L. Longa, and H.-R. Trebin, J. Chem. PH@3 [26] M. P. Allen, G. T. Evans, D. Frenkel, and B. Mulder, Adv.
3098(1995. Chem. Phys86, 1 (1993.
[13] J. Stelzer, L. Longa, and H.-R. Trebin, Mol. Cryst. Lig. Cryst. [27] P. J. Campet al, J. Chem. Physl05 2837(1996.
262 455(1995. [28] M. P. Allen, Mol. Simul.2, 301(1989.
[14] J. Stelzer, H.-R. Trebin, and L. Longa, J. Chem. P, [29] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vet-
1295E) (1997. terling, Numerical Recipes in Fortran2nd ed.(Cambridge

[15] J. Stelzer, L. Longa, and H.-R. Trebin, Phys. Re\63: 7085 University Press, Cambridge, 1992



